Methane Monooxygenase Hydroxylase and B Component Interactions†
Jingyan Zhang, Bradley J. Wallar,‡ Codrina V. Popescu,§ Daniel B. Renner, David D. Thomas, and John D. Lipscomb*
Department of Biochemistry, Molecular Biology and Biophysics and Center for Metals in Biocatalysis,
University of Minnesota, Minneapolis, Minnesota 55455
Received November 3, 2005; Revised Manuscript Received January 3, 2006

ABSTRACT: The interaction of the soluble methane monooxygenase regulatory component (MMOB) and the active site-bearing hydroxylase component (MMOH) is investigated using spin and fluorescent probes. MMOB from Methyllosinus trichosporium OB3b is devoid of cysteine. Consequently, site-directed mutagenesis was used to incorporate single cysteine residues, allowing specific placement of the probe molecules. Sixteen MMOB Cys mutants were prepared and labeled with the EPR spin probe 4-maleimidomethyl-2,2,6,6-tetramethyl-1-piperidinyloxy (MSL). Spectral evaluation of probe mobility and accessibility to the hydrophilic spin-relaxing agent NiEDDA showed that both properties decrease dramatically for a subset of the spin labels as the complex with MMOH forms, thereby defining the likely interaction surface on MMOB. This surface contains MMOB residue T111 thought to play a role in substrate access into the MMOH active site. The surface also contains several hydrophilic residues and is ringed by charged residues. The surface of MMOB opposite the proposed binding surface is highly charged, consistent with solvent exposure. Probes of both of the disordered N- and C-terminal regions remain highly mobile and exposed to solvent in the MMOH complex. Spin-labeling studies show that residue A62 of MMOB is located in a position where it can be used to monitor MMOH—MMOB complex formation without perturbing the process. Accordingly, steady-state kinetic assays show that it can be changed to Cys (A62C) and labeled with the fluorescent probes 6-bromoacetyl-2-dimethylaminonaphthalene (BADAN) or 5-(((2-iiodoacetyl)amino)ethyl)amino)naphthalene-1-sulfonic acid (1,5-IAEDANS) without loss of the ability of MMOB to promote turnover. The BADAN fluorescence is partially quenched and red shifted as the complex with MMOH forms, allowing affinity measurements. It is shown that the high affinity of labeled MMOB (K_D = 13.5 nM at pH 6.6, 25 °C) for the oxidized MMOH decreases substantially with increasing pH and increasing ionic strength but is nearly unaffected by addition of nonionic detergents. Similarly, the fluorescence anisotropy of the 1,5-IAEDANS-labeled A62C-MMOH complex is perturbed by salts but not nonionic detergents. This suggests that the MMOB—MMOH complex is stabilized by electrostatic interactions consistent with the characteristics of the proposed binding surface. Reduction of MMOH results in a 2–3 order of magnitude decrease in the affinity of the BADAN-labeled A62C-MMOB—MMOH complex, consistent with previous indications of structural change associated with reduction of the active site dinuclear iron cluster. Utilizing BADAN-labeled MMOB, the association and dissociation rate constants for the MMOB—MMOH binding reaction were determined and found to be consistent with a two-step process, possibly involving rapid association followed by a slower conformational change. The latter may be related to the regulation of substrate access into the active site of MMOH.

Methane monoxygenase (MMO) catalyzes the NADH-coupled reaction of methane with O_2 to form methanol and water (I):

\[
\text{NAD(P)H} + \text{H}^+ + \text{CH}_4 + \text{O}_2 \rightarrow \text{NAD(P)}^+ + \text{CH}_3\text{OH} + \text{H}_2\text{O}
\]

The soluble form of MMO (sMMO) has been isolated from several methanotrophs including Methyllosinus trichosporium OB3b and Methyllococcus capsulatus (Bath) (2–8). sMMO consists of three protein components: a 245 kDa hydroxylase (MMOH) with a (αβγ) subunit structure containing a carboxylate- and bis-μ-hydroxo-bridged dinuclear iron center in each protomer, a 38 kDa reductase (MMOR) and B; WT-MMOB, wild-type MMOB; MMOR, sMMO reductase; MOPS, 3-morpholinosopropanesulfonic acid; O, P, Q, and T, intermediates from the MMOH catalytic cycle; MMOH^ox, diferroic form of MMOH; MMOH^red, diferrous form of MMOH; BADAN, 6-bromoacetyl-2-dimethylaminonaphthalene; 1,5-IAEDANS, 5-(((2-iiodoacetyl)amino)ethyl)amino)naphthalene-1-sulfonic acid; TCEP, tris(2-carboxyethyl)-phosphine hydrochloride; MSL spin label, 4-maleimidomethyl-2,2,6,6-tetramethyl-1-piperidinyloxy; SDSL, site-directed spin labeling; RRT, reciprocal relaxation time.

† Abbreviations: MMO, methane monoxygenase; sMMO, soluble form of MMO; MMOH, sMMO hydroxylase; MMOHsites, MMOH active sites (2 MMOHsites = 1 MMOH); MMOB, sMMO component B; WT-MMOB, wild-type MMOB; MMOR, sMMO reductase; MOPS, 3-morpholinosopropanesulfonic acid; O, P, Q, and T, intermediates from the MMOH catalytic cycle; MMOH^ox, diferroic form of MMOH; MMOH^red, diferrous form of MMOH; BADAN, 6-bromoacetyl-2-dimethylaminonaphthalene; 1,5-IAEDANS, 5-(((2-iiodoacetyl)amino)ethyl)amino)naphthalene-1-sulfonic acid; TCEP, tris(2-carboxyethyl)-phosphine hydrochloride; MSL spin label, 4-maleimidomethyl-2,2,6,6-tetramethyl-1-piperidinyloxy; SDSL, site-directed spin labeling; RRT, reciprocal relaxation time.
FAD and a [2Fe-2S] cluster, and a 15 kDa regulatory component (MMOB). MMOH is responsible for O₂ activation at the diiron cluster and subsequent hydrocarbon oxidation (4, 9). The X-ray crystal structure of MMOH has been solved and shows that the diiron cluster is bound in the α-subunit approximately 12 Å below the protein surface in a cavity with no obvious access route to bulk solution (10, 11). This contrasts sharply with the structure of other diiron cluster containing oxygenase enzymes, such as Δ⁹-stearoyl-acyl carrier protein desaturase and toluene monooxygenase, in which large substrate access channels exist (12–14).

sMMO employs a complex regulatory system in order to ensure that NADH utilization is tightly coupled to hydrocarbon oxidation and that, once oxygen is activated, it reacts preferentially with methane. This latter aspect of regulation is important because methane is the only physiologically relevant substrate of methanotrophic bacteria. Nevertheless, designing a system to preferentially oxidize methane is nontrivial because it has the highest bond dissociation energy of any linear hydrocarbon, and it has none of the common shape, polarity, and charge determinants normally used by biological systems to ensure specificity. The regulatory system of sMMO is implemented via a collaboration between MMOH and MMOB. Previous studies have revealed the very significant impact that MMOB has on catalysis (5). For example, product distribution studies show that MMOB controls the regioselectivity of hydroxylation of complex alternative substrates, suggesting that it can control the shape of the MMOH active site (15). Also, the redox potential of MMOH is 132 mV lower when it forms a complex with MMOB, suggesting that the environment of the MMOH dinuclear iron cluster is altered as MMOB associates with MMOH. Accordingly, EPR (4, 16, 17) and CD/MCD (18) studies have shown that the spectroscopic properties of the cluster are substantially altered when the complex with MMOB is formed.

Some insight into the basis for these and many other effects of MMOB has been gained through structural and kinetic studies. Cross-linking studies showed that MMOB forms a specific complex with the α-subunit of MMOH (16). Rapid freeze–quench studies showed that the rate constant for the reaction of diferrous MMOH with O₂ to form the first peroxo (or superoxo) intermediate P* is increased 1000-fold by formation of the MMOB–MMOH complex. This shifts the rate-limiting step from the beginning of the catalytic cycle to the end, allowing at least four additional intermediates (P*, P, Q, and T) to be directly detected (9, 19–21). The NMR structure of MMOH has been solved and shows that it has both a well-folded core section and extended, disordered N- and C-terminal regions (residues 1–35 and 127–138, respectively) (22–24). NMR relaxation studies showed that residues from both the core and disordered regions of MMOB interact with MMOH in the complex (23, 24). Mutation of these residues either singly or in small groups was shown to alter the rate constants of specific steps in the catalytic cycle (25). In particular, mutation of a cluster of four residues N107G/S109A/S110A/T111A (termed the Quad mutant) to smaller, more hydrophobic residues causes the reactive intermediate Q to transfer oxygen to large substrates more rapidly and the product complex T to release large products more efficiently. This observation led to the suggestion that a major function of MMOB is to create a pathway of some sort into the buried active site of MMOH small enough to allow only methane and O₂ easy passage, providing a very straightforward method for selection.

The “molecular sieve” mechanism of selection by MMO has been tested in several ways. One test was based on the observation that the exceptionally large deuterium kinetic isotope effect on the reaction of methane with intermediate Q [KIE ≈ 50 (26)] was not observed when ethane was used as an alternative substrate (27). This would be expected if ethane is too large to enter the active site rapidly, making binding rate limiting instead of C–H bond breaking. Use of the Quad mutant of MMOB, or its functional derivative, MMOB-T111A, in place of MMOB unmasked an ethane KIE of ~2, presumably due to a “widening” of the access pathway by reducing the size of the MMOB residues at the portal.

The next step in understanding the physical basis for the MMOB–MMOH regulatory system is to structurally characterize the complex and its interface surface. Unfortunately, cocrystallization of these two sMMO components has not been achieved, and the complex is too large for NMR solution structures. On the basis of the X-ray crystal structure of MMOH, it has been suggested that the MMOB docks in a “canyon” created by the interface of the two protomeric trimer units (10). EPR (28) and mass spectroscopic analysis of cross-linked components (29) have suggested that the binding occurs on the surface of the MMOH α-subunit that faces the canyon. No studies to date have definitively identified the specific amino acid side chains that compose the binding surface of either MMOH or MMOB.

Here we apply the techniques of site-directed spin labeling (SDSL) (30) and small metal chelate paramagnetic relaxation (31) to assess the change in mobility and accessibility of specific spin-labeled MMOB residues upon complex formation with MMOH. Both techniques identify a single binding surface, which includes the residues of the Quad mutant. This information is used to identify a site away from the binding interface that can be labeled with fluorophores to allow a detailed investigation of the thermodynamics and kinetics of complex formation as well as the stabilizing forces of the component interface. This study lends new insight into the critical structural factors that lead to regulation of monooxygenase catalysis in the sMMO system and the roles of residues that serve to gate substrate access.

EXPERIMENTAL PROCEDURES

Reagents. Common reagents were of the highest grade available and were obtained from either Sigma (St. Louis, MO) or Aldrich Chemicals (Milwaukee, WI). They were used without further purification. Reagents for cloning, mutagenesis, and overexpression were purchased from Promega (Madison, WI), New England Biolabs (Beverly, MA), Life Technologies Inc. (Rockville, MD), Stratagene (La Jolla, CA), Invitrogen (Carlsbad, CA), and Qiagen (Valencia, CA). The sulfhydryl-specific probes, 6-bromoacetyl-2-dimethylaminophenethalene (BADAN) and 5-(((2-iodoacetyl)amino)ethyl)amino)naphthalene-1-sulfonic acid (1,5-IAEDANS), and 4-maleimido-2,2,6,6-tetramethyl-1-piperidinyloxy (MSL), were sup-
plied by Molecular Probes, Inc. (Eugene, OR). DEAE-
SePharose and Sephadex G-25, G-50, and G-75 resins were products of Pharmacia (Piscataway, NJ). Water was deion-
ized and further purified using a Millipore reverse osmosis system.

Bacterial Growth and Protein Purification. MMOH and MMOR were purified from *Ms. trichosporium* OB3b, and enzyme and protein assays were conducted as previously reported (4, 32). MMOB was purified after overexpression in *Escherichia coli* as previously described (22, 25), but a modified refolding method was used (46). The total yield was approximately 200 mg of refolded MMOB from 20 g wet weight of recombinant *E. coli* for expression of both WT-MMOB and its mutant forms.

Site-Directed Mutagenesis. All of the site-directed muta-
tions were made in the pBWJ400 plasmid (25) containing the WT-MMOB gene using a QuickChange kit (Stratagene, La Jolla, CA). All of the mutations were confirmed by sequencing at the University of Minnesota Microchemical Facility. The oligonucleotides used to introduce the mutations to the MMOB gene are shown in Table S1 (see Supporting Information). The mutant MMOBs were expressed and purified as described above for WT-MMOB.

Steady-State Kinetic Measurements. Steady-state kinetic experiments were performed using a Hewlett-Packard 8453 UV−vis spectrophotometer. For the multiple turnover reaction with the substrate nitrobenzene, the reaction rates were determined by keeping all other reaction components fixed while varying the MMOB concentration. In some cases, comparative studies were performed by measuring O2 uptake using a Clark-type oxygen electrode and furan as the assay substrate.

Site-Directed Labeling. The purified MMOB or mutant MMOB was diluted to 100 μM final concentration in anaerobic 50 mM MOPS, pH 7.0. A 10-fold molar excess of TCEP [tris(2-carboxyethyl)phosphine] was added to reduce any disulfide bonds between MMOB molecules, and the reaction was allowed to proceed for 2 h under Ar. To prepare spin-labeled samples, a concentrated MSL stock solution was prepared in DMSO, and a small amount was added to the protein solution to give a final concentration of 1 mM. The labeling reaction was complete in 2 h at room temperature or overnight at 4 °C. An excess of mercapto-
ethanol or cysteine was then added to consume excess MSL. The labeled MMOB was purified by extensive dialysis at 4 °C with 25 mM MOPS, pH 7.0.

To prepare BADAN-labeled A62C, a small amount of BADAN stock solution (50 mM stock in DMSO) was added to the TCEP-reduced A62C to give a 200 μM final solution, and the mixture was allowed to stir under anaerobic conditions at 4 °C for 2.5 h. For the 1,5-IAEDANS labeling, 1,5-IAEDANS (75 mM stock in DMF) was added to 200 μM final concentration, and the mixture was allowed to stir at 4 °C for 20 h. In each case, the reaction was quenched by addition of 500 μM cysteine. The reaction mixtures were dialyzed versus 2 L of 50 mM MOPS, pH 7.0, for 3 h (3×). After dialysis, labeled protein was further purified on a Sephadex G-25 column. The final sample was frozen with liquid nitrogen and stored at −80 °C.

To quantitate the extent of BADAN and 1,5-IAEDANS labeling, a standard curve was first generated for both dyes in solution after reaction with cysteine. The concentration of the dye could be determined from the 394 nm (BADAN) or 340 nm (1,5-IAEDANS) absorbance value alone. However, both BADAN and 1,5-IAEDANS absorb in the 280 nm region, complicating protein determinations. Consequently, the dye concentration was used to correct the 280 nm absorbance for the contribution of the fluorophore, allowing an accurate protein concentration to be determined. In all cases, the ratio of both BADAN and 1,5-IAEDANS to A62C was 1.0 ± 0.05.

Circular Dichroism Spectroscopy. CD measurements were performed on a Jasco 710 spectropolarimeter at room temperature in the range of 190−260 nm. Protein samples (100 μM) were prepared in 25 mM MOPS, pH 7.0. Final spectra are the averages of six scans.

EPR Spectroscopy. EPR spectra were acquired by using a Bruker EleXsys 500 spectrometer with the SHQ cavity. Samples were measured in quartz capillaries at 25 °C set by using a Bruker temperature controller. All spectra were obtained with a 100 G scan width, using 100 kHz field modulation with an amplitude of 2 G. Power saturation curves were obtained by monitoring the peak-to-peak intensity of the central resonance (m = 0) as a function of incident microwave power. Typically, the MMOB concentration was lower than 100 μM, and the total volume was 25 μL. All the EPR samples were prepared in 50 mM MOPS buffer, pH 7.0.

Accessibility Measurement. Solvent accessibility of the spin label was determined by use of the hydrophilic paramagnetic relaxing agent nickel ethylenediaminediacetic acid (NiEDDA), which was synthesized according to an established procedure (33). This reagent increases the relaxation rate by collisional spin exchange, so the microwave power required for half-saturation increases in proportion to solvent accessibility (31, 34). The EPR signal in the presence and absence of 3 mM NiEDDA was recorded as a function of incident microwave power, and the data set was fit by

$$A = IP_{1/2}^{1/2}[1 + (2^{1/b} - 1)P/P_{1/2}]^{-b}$$ \((1) \)

where A is the signal amplitude, I is a scaling factor, P is the incident microwave power, $P_{1/2}$ is the microwave power at half-saturation, and b is a measure of the homogeneity of the saturation line. In the nonlinear least-squares fit, I and $P_{1/2}$ were allowed to vary freely and b was allowed to vary in the range of 0.5−1.5 (35). Spectral parameters for the saturation data were fit to eq 1 using Origin 5.0 to obtain $P_{1/2}$.

The increase in $P_{1/2}$, Δ$P_{1/2}$, due to the relaxing agent, is proportional to the collision frequency W divided by the spin−spin relaxation time, T_2 (31, 34):

$$\Delta P_{1/2} = P_{1/2} - P_{1/2}^{0} \propto W/T_2$$ \((2) \)

where $P_{1/2}^{0}$ is the microwave power at half-saturation without NiEDDA added. It has been found experimentally that the peak-to-peak width of the central m = 0 resonance (ΔH) is
proportional to T_s^{-1}, allowing a relative value of W to be determined. A convenient method to compare the accessibility for different labeled sites on MMOB in the presence and absence of MMOH is obtained from the ratio of relative W values (34):

$$F = \frac{\Delta P_{1/2}/\Delta H \text{ (with MMOH)}}{\Delta P_{1/2}/\Delta H \text{ (without MMOH)}}$$

(Mobility Measurement). The EPR spectrum of the bound spin label offers a very sensitive measure of the mobility of the probe, but this mobility is affected by contributions from many sources, including local probe dynamics, segmental motion of the protein, and the protein correlation time. The EPR spectral line shape is altered as the probe becomes immobilized with the separation of the extrema increasing from about 31.8 G for completely mobile to 70 G for completely immobile on the EPR time scale (nanoseconds) (36). The inverse of the central $m = 0$ resonance line width (ΔH^{-1}) provides a semiquantitative measurement of the mobility that averages all of the sources of motion (37). Normalizing this value to the ΔH^{-1} values for the most (ΔH_{m}^{-1}) and least (ΔH_{i}^{-1}) mobile conditions observed for the protein under study provides a convenient method to compare changes in mobility for labeled positions:

$$M = \frac{\Delta H_{obs}^{-1} - \Delta H_{i}^{-1}}{\Delta H_{m}^{-1} - \Delta H_{i}^{-1}}$$

(Fluorescence Measurements). All steady-state and time-resolved fluorescence spectroscopy measurements on samples of labeled MMOB or MMOH-MMOB complexes at equilibrium were made at 25 °C using either the SPEX Fluorolog DM3000 (Edison, NJ) or the ISS PC1 and K2 photon counting and multifrequency phase fluorometer (Champaign, IL). In the case of BADAN-A62C MMOB, an excitation wavelength of 394 nm was used, while 488 nm was used as the excitation wavelength, whereas a 338 nm was used as the excitation wavelength. For 1,5-IAEDANS-labeled MMOB, a wavelength of 394 nm was used, while 490 nm was monitored for emission. For 1,5-IAEDANS-labeled MMOB, four different measurements were performed using an Applied Photophysics Ltd. SX.18MV stopped-flow spectrometer equipped with the SK.1E extended spectra kinetic accessory (Surrey, United Kingdom). All reactions proceed at 4 °C. An excitation wavelength of 395 nm was used, and emission was monitored using a 455 nm cutoff filter. In the determination of “on” rates for MMOB to MMOH, oxidized MMOH in 50 mM MOPS, variable pH, was rapidly mixed with BADAN-A62C MMOB in the same buffer. For linear and log time traces, 1000 data points were collected. The rate constants are averages of at least 10 experiments, unless otherwise noted.

Calculations. For all of the steady-state fluorescence titrations of MMOH to BADAN-A62C MMOB, the concentration of MMOH is given in active sites, or MMOH$_{sites}$ (2 MMOH$_{sites}$ = 1 MMOH). The best-fit model assumed that the two α/β protomers (active sites) are identical and independent of each other; therefore, each MMOH protomer was fit as if a separate protein. No evidence that the two protomers are nonequivalent was observed in the fluorescence titrations. The fraction bound was determined from the fractional change in fluorescence over the maximum change at saturation. This allows the concentration of sites bound and free to be calculated from the known total concentrations of MMOH and MMOB in the mixture. A plot of fraction bound versus [MMOH$_{sites}$] was then fit to the one-site Adair equation by nonlinear regression analysis to yield the K_D value.

For the fluorescence anisotropy experiments using 1,5-IAEDANS-labeled A62C-MMOB, four different measurement conditions were used, V_V, V_H, H_V, and H_H, reflecting the polarization of exciting/monitoring light (e.g., H_V denotes horizontal excitation and vertical detection). Anisotropy (r) was calculated as follows:

$$r = (V_V - G_{H_H})/(V_V + 2GV_{H_H})$$

where $G = H_V/H_H$ (5)

$$r = r_0(app)/[1 + (\tau_1/\tau_C)]$$

where $r_0(app)$ is the limiting anisotropy in the absence of motion, τ_1 is the fluorescence lifetime, and τ_C is the rotational correlation time (38).

RESULTS

Cysteine Mutants of MMOB. On the basis of the NMR solution structure of MMOB (22), 16 sites were selected for mutagenesis to incorporate single Cys residues into the structure. These positions, listed in Table 1, were selected due to either their surface location, their suggested involvement in binding to MMOH from previous studies (23, 28), or their postulated role in the mechanism of catalysis (25, 39). All structural regions of MMOB were represented, although only about 12% of the total number of MMOB...
residues were altered. The cysteine mutants expressed well and did not result in any significant changes in the stability of MMOB.

Steady-State Kinetic Assays. MMOB activity is measured as an enhancement of MMOH turnover activity in the reconstituted sMMO system. WT-MMOB increases the turnover number approximately 150-fold (4). As shown in Table 1, all of the mutants can support at least 50% of the wild-type rate with several showing full activity. The rate-limiting step in the MMOH catalytic cycle is usually product release when the form of MMOB used is able to enhance the rate of initial O₂ binding (9, 40). This appears to be the case for all of the mutants in this study. It is possible that some of the fast steps of the catalytic cycle are slowed by the mutants, but this would not be detected by steady-state measurements.

Past studies have shown that a 1:1 WT-MMOB—MMOH_{lites} complex maximizes the steady-state turnover rate, but larger ratios result in a decreased rate due to formation of inhibitory complexes between two MMOB molecules or MMOB and MMOR (16). For WT-MMOB, the MMOH complex is very stable such that a 1:1 ratio of components saturates the active complex even at assay concentrations. This is also true for some of the mutant MMOBs, but others require a larger ratio as shown in Table 1. Evidently, mutation to Cys in some positions weakens the MMOB—MMOH complex, perhaps due to inclusion of the Cys residue in the binding interface. When the spin label is added, the mutants retain their activity, although the ratio of MMOB—MMOH that maximizes the activity increases slightly in some cases (Table 1).

CD Measurements. To confirm that the mutations did not affect the structure, far-UV CD spectra were recorded. The spectra of most mutants are indistinguishable from that of WT-MMOB in 190 to 260 nm region. However, the spectra of the three mutants shown in Figure S1, I84C,² D54C, and A89C, exhibit some differences in both the 195—200 and 200—225 nm regions, suggesting local reorganization of secondary structure. The NMR structure shows that the I84 and A89 residues extend into the center of the protein structure, and thus it is not unreasonable for their substitution to cause structural modifications (22). Residue D54 appears to be on the MMOB surface, but it is in a cluster of Glu and Lys residues. Alteration of the charge in this case may cause a disruption in the MMOB structure. This is consistent with the data shown in Table 1, which indicates that I84C and D54C have a somewhat decreased ability to enhance turnover and lower affinity for MMOH. Although these structural changes do not inactivate MMOB, they may cause a change in the MMOB—MMOH interaction, and thus they will not be considered further in this study.

Spin Label Mobility. The mobility of the MSL spin labels placed in different positions of MMOB varies widely. For example, as shown in Figures 1A and S2, the splitting between the extrema of the spectrum of the R133C-MSL and K15C-MSL, with modified residues located on the disordered C- and N-terminal region, respectively, of MMOB, is approximately 37 G. This is close to the value of 31.8 G observed for MSL freely tumbling in solution (τ_c < 1 ns),

²The mutated MMOB is referred to in this study by identifying the site of the mutation.

![Figure 1: EPR spectral changes for labeled MMOB mutants. Representative spectra are shown for spin-labeled MMOB mutants alone (black) and after addition of equimolar MMOH_{lites} (red). Spectra of all of the labeled mutants are shown in Supporting Information, Figures S2—S4. (A) A mutant labeled in the C-terminal region. A similar result is observed when a mutant labeled in the N-terminal region is examined (see Figure S2). (B) A mutant labeled in the putative MMOB—MMOH interface region of the well-folded core structure. (C) A mutant labeled in the region of the well-folded core that is proposed to be solvent-exposed in the MMOB—MMOH complex. For mutants that exhibit a substantial spectral change when MMOH is added, the change is generally not maximized by equimolar MMOH_{lites}. The ΔH₀ data shown in Table 2 were determined from the spectra of samples where sufficient MMOH_{lites} was added to maximize the spectral change. Instrumental parameters are given in Experimental Procedures.](Image)
Addition of MMOH to a concentration sufficient to saturate the MMOB–MMOH complex causes substantial changes in the local probe mobility of some of the labeled MMOB residues. As shown in Figure 2 and Table 2, titration of MMOH into a sample of A115C-MSL causes a very significant shift from high to low mobility. Similarly, each of the labeled residues represented in Figures 1B and S3 shows a substantial restriction in mobility when the complex with MMOH forms even in a 1:1 ratio (also see Table 2 for ΔH_0 values when the complexes are saturated). This is consistent either with these residues forming part of the MMOB–MMOH interface or with a conformational change caused by complex formation that restricts the local motion of the probes.

Two sets of residues show little or no reduction in mobility when the complex forms. The labeled residues in the N- and C-terminal regions continue to move rapidly after MMOH binds, as shown in Figures 1A and S2 and Table 2. Also, as seen in Figures 1C and S4 and Table 2, labeled residues V68C, A62C, and D87C show only slightly altered spectra, and their mobility is changed marginally or not at all.

Spin Label Accessibility. The origin of the decreased mobility for some residues when MMOH is added can be examined to some extent by determining the accessibility of the probe to solvent or, more specifically, a hydrophilic paramagnetic relaxing agent. It is presumed that a spin label that becomes buried in a protein–protein interface will be significantly less accessible to a relaxing agent such as NiEDDA. The change in the relaxation rate of the probe can be monitored by determining the $\Delta P_{1/2}$ value as described in Experimental Procedures and eqs 1 and 2. By comparing $\Delta P_{1/2}$ values in the presence and absence of MMOH, a differential accessibility parameter F (Table 2) can be calculated as described in Experimental Procedures and eq 3.

A typical power saturation curve for a spin-labeled MMOB mutant in the presence and absence of MMOH and NiEDDA is shown in Figure 3. Both the relaxing agent and MMOH strongly affect the observed power saturation value. Table 2 shows the observed F values for each of the mutant MMOBs in the presence of sufficient MMOH to saturate the complex. Several labeled mutants, including D87C, V68C, and A62C from the core region and R133C and K15C from the C- and N-terminal regions, respectively, are highly accessible and show no significant change in accessibility upon addition of MMOH. The other residues examined have

![Figure 2: EPR spectral changes of A115C-MSL in the presence of MMOH. MMOH was added in the ratio shown to spin-labeled A115C. Instrumental parameters are given in Experimental Procedures.](image1)

![Figure 3: Power saturation curves of spin-labeled MMOB in the presence and absence of MMOH and NiEDDA. The microwave saturation curve of MSL spin-labeled MMOB mutant V39C alone and after mixing with 2 equiv of MMOH, then NiEDDA, and 3 mM NiEDDA. Instrumental parameters and data analysis techniques are given in Experimental Procedures.](image2)

Table 2: Mobility and Accessibility Parameters for Spin-Labeled MMOB Mutants Alone and in Complex with MMOH

<table>
<thead>
<tr>
<th>MMOB</th>
<th>MMOB–MMOH</th>
<th>MMOB, Mobility</th>
<th>MMOB–MMOH, Mobility</th>
<th>rel Mobility</th>
<th>rel Access</th>
</tr>
</thead>
<tbody>
<tr>
<td>ΔH_0</td>
<td>$\Delta P_{1/2}$</td>
<td>ΔH_0</td>
<td>$\Delta P_{1/2}$</td>
<td>ΔH_0</td>
<td>$\Delta P_{1/2}$</td>
</tr>
<tr>
<td>D87C</td>
<td>6.4</td>
<td>400</td>
<td>6.2</td>
<td>410</td>
<td>0.3</td>
</tr>
<tr>
<td>R133C</td>
<td>3.6</td>
<td>350</td>
<td>3.7</td>
<td>320</td>
<td>1.0</td>
</tr>
<tr>
<td>K15C</td>
<td>3.6</td>
<td>350</td>
<td>3.7</td>
<td>320</td>
<td>1.0</td>
</tr>
<tr>
<td>V68C</td>
<td>3.7</td>
<td>670</td>
<td>3.8</td>
<td>560</td>
<td>1.0</td>
</tr>
<tr>
<td>A62C</td>
<td>4.0</td>
<td>350</td>
<td>4.6</td>
<td>320</td>
<td>0.9</td>
</tr>
<tr>
<td>K44C</td>
<td>5.4</td>
<td>315</td>
<td>9.8</td>
<td>150</td>
<td>0.5</td>
</tr>
<tr>
<td>G119C</td>
<td>3.9</td>
<td>190</td>
<td>6.2</td>
<td>50</td>
<td>0.9</td>
</tr>
<tr>
<td>S109C</td>
<td>4.9</td>
<td>160</td>
<td>8.7</td>
<td>40</td>
<td>0.6</td>
</tr>
<tr>
<td>T111C</td>
<td>3.7</td>
<td>255</td>
<td>5.1</td>
<td>35</td>
<td>1.0</td>
</tr>
<tr>
<td>D71C</td>
<td>4.3</td>
<td>190</td>
<td>6.2</td>
<td>30</td>
<td>0.7</td>
</tr>
<tr>
<td>V39C</td>
<td>4.3</td>
<td>1070</td>
<td>7.9</td>
<td>205</td>
<td>0.7</td>
</tr>
<tr>
<td>A115C</td>
<td>4.5</td>
<td>130</td>
<td>8.0</td>
<td>15</td>
<td>0.7</td>
</tr>
<tr>
<td>Y102C</td>
<td>3.8</td>
<td>1510</td>
<td>7.5</td>
<td>195</td>
<td>0.9</td>
</tr>
</tbody>
</table>

Subscripts f and b refer to free and bound states, respectively, for MMOB. Other definitions and methods for determination of parameters are given in Experimental Procedures. The error in ΔH_0 is approximately ±0.1 G. The error in $\Delta P_{1/2}$ is approximately ±5%.
varying degrees of accessibility in the absence of MMOH, but they become much less accessible when MMOH is added. The labeled residues are likely to be in the MMOH-MMOB interface, but sequestration by a conformational change in MMOB caused by the formation of the complex cannot be ruled out. It is noteworthy that the spin label of D87C is substantially immobilized both before and after addition of MMOH, yet it is highly accessible to the relaxing agent in both cases. Thus, in this case, the technique can differentiate between immobilization due to the protein structure and that due to formation of the protein–protein complex.

Characterization of the Binding Interface. Inspection of the data in Tables 1 and 2 shows that mutation of the residues at positions 62 or 68 to Cys (i) causes little change in activity, (ii) retains high mobility for bound spin labels after MMOH binding, and (iii) retains high accessibility to a spin relaxing agent in the MMOH-MMOB complex. This suggests that these residues are not directly in the MMOH-MMOB binding interface, and thus labels at these positions could be used as innocent monitors of the binding process. A62C was chosen for further study because both secondary structure predictions and the NMR solution structure (22) showed this residue to be exposed on the surface in a β-turn so that it should have few interactions with other MMOB residues.

BADAN-A62C MMOB Binds to MMOH. A62C was labeled stoichiometrically with the fluorescent probe BADAN as described in Experimental Procedures. Evaluation of the steady-state kinetics for the reconstituted sMMO system and of the transient kinetics of the MMOH single turnover cycle in the presence of BADAN-A62C showed no significant differences from those using wild-type MMOB (Figure S5A). Specifically, the labeled protein maximizes steady-state turnover at a 1:1 ratio with MMOH, showing that a high-affinity complex is formed. Also, it allows formation of the key transient intermediate Q of the reaction cycle at the same rate as WT-MMOB (Figure S5B), suggesting that the oxygen activation phase of the catalytic cycle is not significantly altered.

As shown in Figure 4 (solid lines), the emission profile of BADAN decreases in intensity and shifts to the red as MMOH is added, in accord with our preliminary studies (29). This result shows that the environment of the probe is not completely unaltered when the complex is formed. However, the observed changes suggest that it shifts to a more polar environment in the complex (41, 42). Thus, it is unlikely to be a part of the binding interface, in accord with the activity and spin-labeling studies reported above. The observation that BADAN-A62C senses complex formation but does not affect the kinetics of the reaction cycle justifies its selection as a probe of the binding process.

Dissociation Constant for the MMOH-MMOB Complex. Figure 5A shows titrations of a constant concentration of BADAN-A62C MMOB with diferric MMOH at several pH values at constant conductivity. Very good hyperbolic fits to the data are obtained under the assumptions that there is one MMOB binding site per MMOH active site and that there is no cooperativity for MMOB binding between the two active sites in the MMOH dimeric protomer. The K_D values obtained at different pH values are summarized in Table 3. It can be seen from these values that increasing pH causes a decrease in the affinity between MMOH and
MMOB. It should also be noted that the K_D value of 68.2 nM at pH 7.0 is in very good agreement with an earlier study of component interactions in MMO, in which it was assumed that a 1:1 complex between MMOH and MMOB is required for maximum steady-state rate. Numerical integration-based simulations of this model yield the solid lines in Figure S5A and a K_D value of 67 nM for the MMOH–MMOB complex (16).

Electrostatic Interactions Play a Role in MMOH–MMOB Binding. To determine whether the stabilization of the MMOH and MMOB complex is due to hydrophobic or hydrophilic forces, the effect of NaCl on the emission profile of the BADAN-A62C MMOB–MMOH complex was evaluated. As shown in Figure 4 (dash-dot lines), the addition of as little as 50 mM NaCl is observed to blue shift and increase the intensity of the emission spectrum. At 500 mM NaCl the emission spectrum of the BADAN-A62C MMOB alone is nearly restored, suggesting that the complex is dissociated. Similar results were observed using KI (data not shown), showing that the effect is not ion dependent and underscoring the conclusion that ionic interactions are likely to be very important in stabilizing the MMOH–MMOB interface. Accordingly, nonionic detergents, including 0.9% n-octyl β-D-glucopyranoside, 0.1% Tween 20, and 0.1% Triton X-100 had no significant effect on the fluorescence emission spectrum of the BADAN-A62C–MMOH complex.

Fluorescence Anisotropy Studies. Changes in the polarization of fluorophores attached to MMOB can also be used to monitor complex formation and dissociation due to the large difference in Stokes radius of MMOB and the MMOB–MMOH complex. In this case, A62C was labeled with the fluorophore 1,5-IAEDANS because it has a relatively long fluorescence lifetime (10–20 ns), allowing more accurate monitoring of the protein rotation (38, 43, 44). The addition of MMOH to 1,5-IAEDANS-A62C caused a predictable increase in the overall fluorescence anisotropy due to the increase in the rotational correlation time of the larger MMOB–MMOH complex (τ_C; see Experimental Procedures, eqs 5 and 6, and Figure 6). The presence of detergents again had no significant effect on the degree of fluorescence polarization. Conversely, the addition of NaCl caused the anisotropy to increase much more slowly with added MMOH, showing that the affinity of MMOB and MMOH is substantially decreased. It should be noted that the maximum anisotropy ($r = 0.103$) was the same for salt- or detergent-containing solutions. As a control for the possibility that the fluorescence lifetime of 1,5-IAEDANS might change under the various conditions of this experiment, the lifetime of the probe conjugated to A62C in the uncomplexed form was measured. No change was observed in the presence of salt or detergent, and the lifetime was also unaltered by the presence of excess MMOH (data not shown). The measured lifetime of 12.5 ns agrees with measurements from past studies of 1,5-IAEDANS (43, 44). Therefore, the change in anisotropy upon MMOH addition most likely arises from the increased global molecular weight of the MMOB–MMOH complex and is a valid probe of the MMOB–MMOH binding reaction.

Determination of Rate Constants for the MMOB–MMOH_{sites} Binding Reaction. Using BADAN-A62C, the kinetics of MMOB binding to MMOH can be directly observed as a change in the fluorescence emission intensity. In these reactions, 200 nM BADAN-A62C was mixed rapidly with varying higher concentrations of MMOH_{sites} so as to establish pseudo-first-order conditions. Then, the resulting decrease in fluorescence was monitored over time. As in the equilibrium K_D measurements, binding was measured at pH 6.6, 7.0, 7.4, and 7.8. An example of the observed time course and fit is shown in Figure 7. All of the kinetic traces required a summed two-exponential fit to the data plus a correction for the slow photobleaching of the BADAN fluorophore that occurs with or without the other reaction components present. The reciprocal relaxation times (RRTs) or rate constants are listed in Table 3. It was found that the faster RRT is pH dependent and linearly dependent on the concentration of MMOH (Figure 8), whereas the slower RRT appeared to be independent of both MMOH...
the association step relative to those of the other reactions constant of 1 listed in Table 3. All of the plots appear to intercept the RRT dependence in the slower phase, which should easily be illustrated below is supported by the lack of concentration and pH. The observation of two kinetic phases could result from a two-step reaction, or there could be two populations of BADAN-A62C or MMOH that react independently at different rates. The two-step reaction hypothesis illustrated below is supported by the lack of concentration dependence in the slower phase, which should easily be observed:

\[
\text{MMOH} + \text{MMOB} \overset{k_1}{\underset{k_{-1}}{\rightleftharpoons}} \text{MMOB}^\text{MMOH}\overset{k_2}{\rightarrow} \text{MMOB} - \text{MMOH}
\]

Second-order rate constants were determined for the faster step from the slopes of the lines shown in Figure 8 and are listed in Table 3. All of the plots appear to intercept the RRT axis slightly above the origin, consistent with reverse rate constant of \(1 \sim 3.5 \text{ s}^{-1}\) as listed in Table 3. The high rate of the association step relative to those of the other reactions in the process justifies analyzing it as a single step reaction as is done in Figure 8. The same values for the association rate constant are obtained when the reaction is analyzed as a two-step reversible process by plotting the sum or product of the RRTs versus MMOH concentration (data not shown). The small reverse rate constant for the association in comparison with the RRT for the putative second step (\(\sim 13 \text{ s}^{-1}\)) accounts for the loss of the expected (nonlinear) concentration dependence of the second phase. The values for \(k_{-1}\) reported in Table 3 must be considered approximate, because they will become progressively less accurate as the rate of \(k_2\) increases, necessitating analysis as a true two-step reaction. The lack of concentration dependence in the slower phase prevents determination of the reversibility of the second step as well as the individual rate constants, so the observed RRT must be considered as approximately equal to the sum of \(k_2 + k_{-2}\). The values for \(k_1\) and \(k_{-1}\) reported in Table 3 give calculated values for \(K_D^{\text{ox}}\) in the range expected from the direct room temperature determinations reported in Table 3.

DISCUSSION

Past studies have shown that the binding of MMOB and MMOH has remarkable effects on the catalytic process that result in (i) acceleration of the formation of a highly reactive activated oxo species (Q) in a protected environment and (ii) the preferential oxidation of methane over other hydrocarbons with weaker C–H bonds. Little is known about the interface of these two sMMO components. The current study utilizes site-directed spin labeling to probe this interaction and allows the identification of the likely binding surface on MMOB. The characteristics of the proposed surface are then tested against the properties of the actual surface using fluorescent probes placed in a position shown by the spin-labeling study to be unlikely to interfere with the complex formation. Considered together, these studies offer new insight into the nature of the binding surface. This is discussed here in the context of previous structural, binding, and kinetic studies.

Residues in the Binding Surface. The results show that MMOB is a good candidate for SDSL because (i) the overall secondary structure, (ii) the ability to bind strongly to MMOH, and (iii) the specific ability to promote rapid catalysis are all maintained in the labeled mutants. Nevertheless, the environments of specifically labeled sites fall into three distinctly different classes on the basis of changes in the mobility and accessibility of the spin labels.

Labels in the C- and N-terminal regions remain highly accessible and mobile in the MMOH complex. NMR studies indicate that the N-terminal region binds to MMOH (23), and catalytic studies show that both the C- and N-terminal regions strongly affect the rate constants of individual steps in the catalytic cycle as well as coupling of reducing equivalents to product formation (25, 45, 46). However, the current results show that when these regions bind, the labels themselves remain highly mobile and are not tied to the rotation of the MMOB–MMOH complex. Thus, it is likely that the terminal regions do not fold into the core region as the complex forms, because if this occurred, they would probably be shielded from solvent and significantly immobilized.
A second group of labeled residues, including A62C, V68C, and D87C, have varying degrees of mobility, but the mobility and accessibility do not change substantially when MMOH binds. It thus seems likely that these residues are not part of the binding interface. In the past, we have used the ratio of MMOB to MMOHsites that maximizes steady-state turnover as an indication of affinity. Each of these three mutants shows the same maximized rate at slightly over 1:1 MMOB:MMOH, suggesting that little change occurs in the binding affinity.

The final group of residues, including Y102C, A115C, T111C, D71C, V39C, G119C, S109C, and K44C, are all strongly perturbed in both accessibility and mobility as the MMOH complex forms, suggesting that these residues are either in the interface or in environments that are greatly altered as the complex forms. In contrast to the two groups discussed above, several modified MMOBs in this group exhibit lower affinity for MMOH, as judged by the amount required to maximize steady-state activity as well as the excess required to saturate the change in spin label EPR line shape (listed in Table 1). Previously, we have observed a 10-fold decrease in affinity for the T111Y MMOB mutant, apparently caused in introduction of the larger residue.

The T111 residue is key to gating substrate into the active site and seems likely to be a part of the binding interface. Evidently, the precise interface required for selection between methane and larger hydrocarbons does not readily accept larger residues. This is consistent with the spin-labeled residues in this group forming part of the binding interface.

Figure 9A shows the location of the residues for the second and third groups described above in the NMR solution structure of MMOB. All of the exposed residues based on the spin label study (cyan) are clustered on one face while all of the proposed buried residues (magenta) are on the opposite face. The key residue T111 described above is located in the center of this view of the proposed buried face.

Comparison with NMR Relaxation Studies. NMR has been used both to solve the solution structure of the MMOB component and to evaluate which backbone elements undergo the largest change in relaxation rate when the complex with MMOH forms. This is generally a good indication of which side chains are involved in the interaction but can also report changes in the environment of internal residues. This technique was applied to both the sMMO system from Ms. trichosporium OB3b and that from Mc. capsulatus (Bath) with similar, but not identical, results. In the application to the Ms. trichosporium OB3b, we noted that it is important to reduce the MMOH for the analysis, because this weakens the binding interaction, as we observed in the studies reported here. This allows more rapid MMOB exchange, providing more reliable data for identification of the binding surface. Figure 9B shows the same two surfaces as in Figure 9A with the residues proposed to interact with the MMOH from NMR (yellow) and spin-labeling studies. Two residues, V39 and T111, were identified both by NMR and by the present EPR study. The residues detected by the spin label studies are colored in the same way as in Figure 9A. It is clear from this comparison that the techniques identify the same surface.
The fact that side chain interactions are identified by the spin-labeling technique greatly strengthens this assignment.

Characteristics of the Binding Surface. The discussion of the binding surface thus far supports the choice of residue A62 as a position that can be labeled with a fluorophore probe without directly perturbing the binding surface. In fact, the results show that a fluorophore attached to the A62C mutant becomes more exposed to solvent as the complex forms. The intense fluorescence of the BADAN probe greatly simplifies the determination of the KD values for complex formation. The values obtained for the oxidized enzyme are nearly identical to those we estimated by fitting steady-state kinetic data to a model that requires MMOH–MMOB complex formation to initiate catalysis (16). The KD values have also been determined for the components from the Mc. capsulatus (Bath) system using isothermal titration calorimetry (47). In that case, the affinity was found to be approximately 4-fold weaker at pH 7.0, 25 °C, but nevertheless in good agreement with the results presented here.

The use of the fluorescent probe has allowed a direct measure of the affinity of reduced MMOH for MMOB for the first time in the current study. The value of 4.5 μM at pH 7.0 shows that the affinity is much weaker than for the oxidized MMOH. This value is again in reasonable agreement with that predicted by modeling the steady-state behavior (26 μM) (16). A similar large decrease in affinity was required to model the MMOB concentration dependence of the interconversion of the transient intermediates in the reaction cycle (40). Also, we have shown in the past that the redox potential of MMOH decreases by 132 mV when complexed with MMOB, indicative of a large decrease in affinity (48).

The results presented here show that the labeled MMOB–MMOH complex is destabilized by relatively low concentrations of salt or by an increase in pH. In contrast, addition of detergents has no effect on the complex stability. This suggests that the binding interface is stabilized by ionic interactions. The opposite conclusion was reached for the Mc. capsulatus (Bath) MMOB–MMOH interaction, based on the failure of salt to elute MMOH from a nickel chelate column to which the His-tagged MMOB–MMOH complex had been bound (49). However, another research group has shown that masking positively charged residues on MMOH inhibits catalysis in the Mc. capsulatus (Bath) sMMO system by preventing MMOB from binding (50). Similarly, we have shown that treatment of MMOB in the Ms. trichosporium OB3b sMMO system with 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide rapidly eliminates its ability to accelerate the reaction by either masking surface carboxylate groups or cross-linking these groups to nearby lysyl residues of MMOB (16). Figure 9C shows the position of charged residues (red, Asp, Glu; blue, Arg, Lys) relative to the residues identified as solvent exposed or masked by the spin-labeling technique greatly strengthens this assignment.

Orientation Relative to MMOH. It is known from cross-linking studies that MMOB binds to the α-subunit of MMOH. The crystal structure of MMOH shows that the boundary between the two αβγ protomers creates a groove in the structure that is a predictable binding site for MMOB and MMOR (10). The MMOH surface facing the groove is also that closest to the buried diiron cluster. On the basis of preliminary cross-linking studies, we have shown that MMOH peptides from this surface, as well as MMOB peptides from the interaction surface proposed here, disappear from tryptic digests when analyzed by mass spectroscopic techniques (29). A trial alignment based on these studies shows that the charged residues that surround the putative interface surface have partners on the MMOH surface. However, this alignment is not unique, and programs designed to dock proteins based on structural information show many possible complexes. Additional specific points of interaction will be required to allow a precise model to be constructed.

One study of MMOB from Ms. capsulatus (Bath) allowed the determination of a distance of only 15 Å from spin-labeled residue C89 to the diiron cluster of MMOH from that system based on saturation recovery EPR (28). The distance from the surface of MMOH to the diiron cluster is at least 12 Å, so this result would imply that MMOB binds on the surface closest to the diiron cluster as proposed above. However, it also implies that the surface we identify as the binding surface in MMOB from Ms. trichosporium OB3b is not the binding surface in Mc. capsulatus (Bath) MMOB because the equivalent residue in the Ms. trichosporium OB3b MMOB (A88) is on the putative solvent-exposed surface. It seems unlikely that the two MMOBs use different binding surfaces because they have nearly the same overall structure. In the results presented here, we have modified and labeled residues A89 and D87. Labeled A89C disrupts the MMOB structure somewhat, and the residue apparently extends into the core structure. Labeled D87C has only moderate mobility, but it is solvent exposed, and this exposure does not change when MMOH is added. The saturation recovery EPR approach can provide precise distance measurements, but precise information about the nature and magnitude of the coupling of the iron in the active site cluster is required for data analysis. A small error in evaluating this coupling could account for the distance discrepancy in the two approaches used to evaluate the MMOH–MMOB interaction.

Comparison of the Putative Binding Surfaces of MMOB Isoforms. A comparison of the aligned amino acid sequences of MMOBs from Ms. trichosporium OB3b and Mc. capsulatus (Bath) shows overall high sequence identity or similarity. All of the specific residues proposed from this study to form part of the interface with MMOH based on labeling

3 J. Zhang, B. V. B. Reddy, and J. D. Lipscomb, unpublished observation.
the cysteine replacements are identical in the two forms of MMOB. This suggests that the same surface of MMOB is used in the interface by each system and emphasizes the importance of precise structure in this region. In contrast, only one of the three residues proposed to reside in the solvent-exposed MMOB surface in the complex with MMOH is identical.

If we have identified the correct binding surface, then its overall characteristics are very similar in MMOBs from *Ms. trichosporium* OB3b and *M. capsulatus* (Bath). In particular, the putative interface surface of the *M. capsulatus* (Bath) is ringed by the same conserved set of negatively charged residues, and it contains many hydrophilic or charged residues. This suggests that ionic or hydrophilic forces also stabilize the complex with MMOH in this system. Indeed, the putative interface in the *M. capsulatus* (Bath) MMOB case contains an additional acidic residue (Asp 108) which may account for the somewhat lower component affinity in this case if a complementary charged residue in not present in MMOH (24, 47).

Dynamics of the MMOB—MMOH Complex Formation Process. The intense fluorescence and sensitivity of the BADAN-labeled MMOB allows the rate constants for formation of the labeled MMOB—MMOH complex to be determined. The process exhibits fast and slow phases accounting for approximately 66% and 34% of the overall amplitude change, respectively. On the basis of the observation that only the fast phase exhibits dependence on MMOH concentration, it is argued above that the reaction occurs in two steps with an association step being the primary contributor to the fast phase. The association step is pH dependent and accounts for the observed pH dependence in the equilibrium K_D values. A similar linear concentration dependence for the association of MMOH and MMOB was observed on the basis of changes in Trp fluorescence in the *M. capsulatus* (Bath) system at pH 7.0 (47), but the rate constant in the forward direction was found to be 3 orders of magnitude smaller than that reported here. Also, only a single phase was observed by monitoring Trp fluorescence. A second phase was predicted to occur as part of a global conformational change linking the two active sites of the dimeric protomer structure of MMOH in order to account for the inhibition observed at high MMOB concentrations in steady-state experiments. However, the predicted rate constants for this change are far smaller than the turnover number for the system and, thus, are not part of the normal catalytic cycle. Although the forward and reverse rate constants for the second phase of the binding reaction we have observed here for the *Ms. trichosporium* OB3b system cannot be resolved, their sum is 2 orders of magnitude above the turnover number at 4 °C and comparable with the rate constant for the O$_2$ binding reaction to form the first peroxo intermediate in the reaction cycle (9). The reaction occurring during the second step of the binding process is unknown, but it would seem reasonable that it is a conformational change that ultimately results in the observed spectroscopic changes at the diiron cluster site of MMOH (16, 18, 53).

Relationship to the Mechanism. The results support many aspects of our proposal for the regulation of the mechanism of sMMO catalysis by MMOB (25, 27, 39). The formation of a strong complex between the MMOH and MMOB components is confirmed, and the change in affinity upon reduction of MMOH is directly demonstrated. This change clearly implies that a structural change in the MMOB—MMOH interface is energetically coupled to the oxidation state of the diiron cluster. Similarly, structural changes caused by association of MMOB with the oxidized form of MMOH are suggested by the kinetic properties of the apparent two-step association reaction. We have proposed that these conformational changes are related to creating a size-selective pathway for methane and O$_2$ into the MMOH active site mediated by sMMO residue T111 and other nearby residues. The proposed MMOB binding surface that emerges from these studies incorporates these residues in the interface. The nature of the putative size-selective pathway is unknown, but two possibilities for molecules the size of methane and O$_2$ are a physical pore or a region of increased mobility. In this regard, it is interesting to note that, whereas residue T111 is clearly sequestered and less mobile in the component complex, its mobility remains much higher than any other residue identified to be in the interface by the spin-labeling technique utilized here.

ACKNOWLEDGMENT

The authors acknowledge Dr. Gregory Hunter for technical advice in the area of fluorescence spectroscopy.

SUPPORTING INFORMATION AVAILABLE

A table showing the oligonucleotides used to construct the mutant MMOBs and five figures providing additional details for the experimental results. This material is available free of charge via the Internet at http://pubs.acs.org.

REFERENCES

35. Ikeda, T., and Ikeda, T. (1999) ATP-induced opposite changes in the local environments around Cys697 (SH2) and Cys707 (SH1) of the myosin motor domain revealed by the PRODAN fluorescent, J. Biol. Chem. 274, 29156–29163.

